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Abstract. We present a formulation which allows heavy quark (c, b, . . .) mass effects to be explicitly incor-
porated in both the coefficient functions and the splitting functions in the parton evolution equations. We
obtain a consistent procedure for evolution through the threshold regions for cc and bb production in deep
inelastic scattering, which allows the prediction of the charm and bottom quark densities. We use the new
formulation to perform a next-to-leading order global parton analysis of deep inelastic and related hard
scattering data. We find that the optimum fit has αS(M2

Z) = 0.118. We give predictions for the charm
components of the proton structure functions F2 and FL as functions of x and Q2 and, in particular, find
that F c

2 is in good agreement with the existing measurements. We examine the Q2 range of validity of the
photon-gluon fusion model for cc electroproduction. We emphasize the value of a precision measurement
of the charm component F c

2 at HERA.

1 Introduction

A very wide range of deep inelastic scattering structure
function data can be successfully described in terms of
universal quark and gluon distributions satisfying DGLAP
(Q2) evolution equations. While the formalism for light
quarks (i.e. mq � ΛQCD) is on a sound theoretical footing,
the treatment of heavy quarks (i.e. mq � ΛQCD) is more
problematic. The reason is that in practice one requires a
consistent description which includes both the kinematical
regions Q2 ∼ m2

q and Q2 � m2
q.

The problem of how to treat heavy quark contributions
to deep inelastic structure functions has been widely dis-
cussed, see for example [1]. It has been brought into focus
recently by the very precise F ep

2 (x, Q2) data from HERA.
Both the H1 and ZEUS collaborations have measured [2,3]
the charm quark component F c

2 of the structure function
at small x and have found it to be a large (approximately
25%) fraction of the total. This is in sharp contrast to what
is found at large x, where typically F c

2/F2 ∼ O(10−2) [4].
Since the HERA F2 data [5,6] are a potentially valuable
source of information on the gluon distribution, the value
of αS , and the relation between the non-perturbative (low
Q2) and perturbative (high Q2) domains, it is important
that charm component is treated correctly.

In this paper we present a new, theoretically consistent
method for calculating the heavy quark contributions to
the deep inelastic electroproduction structure functions F2

and FL.1 Our main focus is on the charm quark contribu-
tion, although our results apply equally well for bottom
and top quarks. The most important feature of our anal-
ysis is that it is applicable both to the threshold region
Q2 ∼ 4m2

c , where phase space effects are important, and to
the asymptotic region Q2 � 4m2

c , where the charm quark
assumes the role of a massless parton and the DGLAP
resummation of leading (αS lnQ2)n contributions is nec-
essary.

Before describing our formalism and presenting quan-
titative predictions, we briefly review existing techniques
for treating the charm quark contribution to F2. The most
simplistic approach is to assume that a probe of virtual-
ity Q2 can resolve a charm quark pair in the proton sea
when Q2 >∼ m2

c . Since such pairs originate from fluctua-
tions of the gluon field, g → cc, a perturbative treat-
ment should be valid as long as m2

c � Λ2
QCD. As Q2

increases, O(m2
c/Q2) corrections to the standard DGLAP

evolution become less important, and the charm quark
can be treated as a (fourth) massless quark. These ideas
are embodied in the ‘massless parton evolution’ (MPE)
approach

c(x, Q2) = 0 for Q2 ≤ µ2
c ,

nf = 3 + θ(Q2 − µ2
c) in Pqg, Pgg, β0, . . . , (1)

1 Note that we only consider here the case of neutral current
deep inelastic scattering. The case of charged current scatter-
ing, e.g. W −c → s, will be somewhat different but can in prin-
ciple be treated using the same techniques
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where µc = O(mc). The charm contribution to the struc-
ture function is then

F c
2 (x, Q2) = 8

9xc(x, Q2) (2)

in lowest order. This is the approach adopted at NLO in
the MRS and CTEQ global parton analyses, with µc cho-
sen in the MRS analysis to achieve a satisfactory descrip-
tion of the EMC F c

2 data [4], while in the CTEQ analysis
µc is set equal to mc. For example, in the MRS(A) analy-
sis [7] it was found that µ2

c = 2.7 GeV2 and that this was
to a good approximation equivalent to taking

2c(x, Q2
0) = δS(x, Q2

0) (3)

with δ ≈ 0.02 at the input scale Q2
0 = 4 GeV2. That is at

the input scale, charm (c + c) was found to have approxi-
mately the same shape as the total quark sea distribution
S, and moreover to form about 2% of its magnitude. The
input parameter µ2

c (or equivalently δ) was chosen to give
a good description of the EMC F c

2 data.
Although phenomenologically successful, the MPE

model clearly cannot give a precise description of the charm
contribution in the threshold region. Two-body kinematics
imply that an on-shell cc pair can be created by photon-
gluon fusion (PGF) provided

W 2 = Q2 1 − x

x
≥ 4m2

c (4)

where W is the γ∗g → cc centre-of-mass energy. That is,
at small x, cc production is not forbidden even at small
Q2 < µ2

c where the MPE approach gives zero2. In the
PGF approach, which was used, for example, in [9–11], F c

2
is calculated using the exact matrix elements and phase
space for the process γ∗g → cc. In leading order in αS we
have

F c
2 (x, Q2) =

∫
dz Cg(z, Q2, µ2)

x

z
g

(x

z
, µ2

)
. (5)

Note that the scale µ2 at which the gluon distribution
and the coupling αS (in the coefficient function Cg) are
evaluated is not specified at leading order, but one might
guess that µ2 = O(m2

c) is appropriate. We discuss a rea-
sonable choice of µ2 in more detail in Sect. 3 together with
the effects coming from next-to-leading order (NLO) cor-
rections. In contrast to the situation for massless quarks,
there is no collinear divergence in the leading-order γ∗g →
cc calculation: the integral over the transverse momentum
of the produced cc pair is regulated by the quark mass:∫

dk2
T k2

T /(k2
T + m2

c)
2. However, this in turn means that

at very high Q2 the leading-order contribution behaves
as F c

2 ∼ αS(µ2
c) ln(Q2/m2

c). Higher-order corrections also
behave as (αS ln(Q2/m2

c))
n, and fixed-order perturbation

theory breaks down. In fact these large logarithms are pre-
cisely those which are resummed by the DGLAP evolution

2 In [8] the MPE model was modified by the introduction of
a smooth ‘smearing’ function which gave a gradual onset of the
charm distribution from a low input scale Q2

0, namely Q2
0 = 1

GeV2

equations. Thus at large Q2 we have to include the charm
quark as a parton in DGLAP evolution. The exact next-
to-leading order corrections to the PGF structure function
are known [12]. Indeed very recently [13] this leading-twist
analysis has been used to perform (αS ln(Q2/m2

c))
n re-

summation for Q2 � m2
c . However such an approach is

of course not applicable in the threshold region Q2 >∼ m2
c ,

which we also wish to study because of the HERA data
for F2 in this domain.

The goal is to include the charm quark in parton evolu-
tion in a consistent way. One prescription, which we shall
call the ACOT procedure, has been advocated in [14,15].
In this approach only massless splitting functions are used
in the evolution with the number of flavours given by (1).
All the mc 6= 0 effects are assigned to coefficient functions.
In principle this approach could be implemented at all or-
ders of perturbation theory, although so far it has only
been implemented at LO where the coefficient functions
are well known, namely the massless coefficient functions
for the light partons and the PGF coefficient function for
charm (and bottom and top). However at NLO, which is
our concern, the situation is much more complicated. To
take the mass effect into account in the ACOT approach
one has to recalculate the coefficient functions, not only
that for charm, but also those for the light quarks and glu-
ons [13]. As the mass effect originates at scale µ2 = O(m2

c)
the new coefficient functions acquire contributions of or-
der αS(m2

c), which are quite different from those of the MS
scheme where the coupling enters as αS(Q2). This discrep-
ancy does not disappear at Q2 � m2

c leading, even in this
domain, to coefficient functions which differ from the con-
ventional MS functions. The ACOT coefficient functions
will be difficult to calculate for the reasons given at the
end of Sect. 2.2. Furthermore analogous coefficient func-
tions will need to be recalculated for all processes.

In view of the practical difficulties of implementing the
ACOT procedure we introduce an alternative prescription,
which is also consistent at all orders, but which generates
partons which may be used with the conventional MS co-
efficient functions for Q2 � m2

c . Moreover in our approach
the existing coefficient functions for light quarks and glu-
ons are unaltered. Of course this means that, in contrast
to ACOT, charm is not evolved as a massless parton.

Is it possible, in principle, to retain the MS scheme
near the charm threshold? To answer this question we
must first define what we mean by the MS scheme. From
the point of view of dimensional regularization one can, of
course, use the MS scheme to renormalize the QCD ampli-
tudes in any kinematical region, even including threshold.
However from the point of view of evolution based on the
renormalization group (RG) equation one faces a prob-
lem. The RG approach is not the best approach in the
presence of a new dimensionful parameter (such as mc)
in the region where the parameter is important. There is
an ambiguity of how to divide the expression for an ob-
servable quantity into the product of parton densities and
coefficient functions which goes beyond the simple MS fac-
torization prescription. We choose parton densities which
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at large Q2 are matched with conventional massless MS
coefficient functions.

The remainder of the paper is organized as follows.
First, in Sect. 2, we discuss how to include the heavy
quark mass in the Altarelli-Parisi splitting kernels in such
a way as not to destroy the original parton interpretation,
that is to ensure energy-momentum conservation etc. In
order to be consistent with the MS factorization scheme
the threshold for the onset of the charm distribution is
Q2 = m2

c . Although in fact we will see that charm par-
tons cannot be resolved in the timescale (∆t ∼ 1/∆E ∼
2E/Q2) of the fluctuations of the gluon into a cc̄ pair until
Q2 > 4m2

c . In Sect. 3 we discuss the coefficient functions.
The PGF contribution will be included in the coefficient
function for the gluon distribution. Thus below the reso-
lution threshold of the charm distribution, Q2 < 4m2

c , our
result for cc production will not be zero but will agree with
the PGF approach. However, at large Q2, as was noted in
[14], part of the PGF cross section is automatically gener-
ated by the evolution of the charm distribution. To avoid
double counting we must therefore subtract from the co-
efficient function given by PGF the contribution which
is generated by evolution in this way. As a consequence,
above the charm threshold a smaller and smaller fraction
of F c

2 will come from the direct photon-gluon fusion mech-
anism, and instead the main part will be generated by
conventional parton evolution. In Sect. 4 we use the new
formulation to perform a NLO global analysis of deep in-
elastic and related hard scattering data. We find an ex-
cellent overall description with, in particular, a significant
charm component of F2 in the HERA regime. The analy-
sis allows us to predict universal charm and bottom quark
distributions, c(x, Q2) and b(x, Q2). In Sect. 5 we present
the partonic decomposition of F c

2 as a function of Q2 and,
for completeness, compare the PGF model estimates. We
also give predictions for F b

2 . In Sect. 6 we study the charm
component of the longitudinal structure function FL. Fi-
nally, in Sect. 7, we give our conclusions.

2 The effects of the charm mass on evolution

As mentioned above, our aim is to develop the appropriate
formalism to describe deep inelastic scattering which in-
corporates the production of a heavy quark pair (which for
definiteness we take to be cc) and which allows a universal
charm parton distribution to be obtained from an analysis
of these and other data. We can identify the charm mass
effects in the structure functions F c

2,L which describe such
scattering from the following subset of integrations3

. . .

∫
dk2

Ti−1

k2
Ti−1

∫
dk2

Ti k2
Ti

(k2
Ti + m2

c)2

∫
dk2

Ti+1

k2
Ti+1

. . . (6)

where kTi are the transverse momenta of the t channel
partons. The mass of the charm quark enters in the k2

Ti

3 The general structure of the integrands is
k2

T /(propagator)2, which for massless partons ∼ 1/k2
T .

The k2
T in the numerator arises from the spin structure of the

parton vertex

Pcc

Pcg

kTi

kTi+1

kTi-1

c

Fig. 1. Part of the parton chain occurring in the description of
deep inelastic scattering which contains the g → cc transition

integration which results from the g → cc transition, see
Fig. 1. For the example of the parton chain shown in Fig.
1 it appears that m2

c should also have been retained in the
integration over k2

Ti+1. However, we show below that this
is only needed at next-to-next-to-leading order (NNLO)
in αS .

First we recall the kinematic regime responsible for the
leading-order (LO) result. LO evolution corresponds to the
resummation of the leading logarithm terms, (αS lnQ2)n,
which arise when the n emitted partons have strongly or-
dered transverse momenta (. . . � k2

Ti−1 � k2
Ti � k2

Ti+1
. . . ). If two of the partons were to have comparable trans-
verse momenta, kTj ∼ kTj+1, then we would lose a ln Q2

and obtain instead a NLO contribution of the form
αS(αS lnQ2)n−1. We may write the Altarelli-Parisi split-
ting functions

Pji = P
(0)
ji + αS P

(1)
ji + . . . (7)

where P (0) is the LO form and P (1) gives the NLO cor-
rection. P (1) includes virtual corrections to the vertex and
propagators as well as the possibility of producing a sec-
ond ‘s channel’ parton with comparable transverse mo-
mentum.

2.1 LO evolution with charm

On the scale of the Altarelli-Parisi evolution in lnQ2, we
see that to a good approximation

1
1 + m2

c/k2
Ti

≈ θ(k2
Ti − m2

c), (8)

that is the presence of the charm mass simply cuts out
the contribution from the region k2

Ti
<∼ m2

c . Indeed we will
find, at LO accuracy, that we have massless three flavour
evolution for Q2 < m2

c and massless four flavour evolution
for Q2 > m2

c ; that is due to strong ordering (k2
Ti+1 � k2

Ti)
we can neglect the charm mass in the k2

Ti+1 integration
of Fig. 1. Therefore at LO the singlet evolution equations
have the symbolic form

ġ = Pgg ⊗ g +
∑

q

Pgq ⊗ q + Pgc ⊗ c

q̇ = Pqg ⊗ g + Pqq ⊗ q (9)
ċ = Pcg ⊗ g + Pcc ⊗ c
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where q = u, d, s denotes the light quark density functions
and c the charm density. We have abbreviated P (0) by P
and ḟ = (2π/αS)∂f/∂ lnQ2. At LO the quark mass effects
are simply encapsulated by

Pci = Pci(mc = 0) θ(Q2 − m2
c) (10)

with i = g or c, and similarly for Pgc. Also the virtual
contribution to Pgg must be modified

Pgg = . . . − 1
3

nf δ(1 − z) (11)

with nf = 3 + θ(Q2 − m2
c), and, of course, we must allow

for the increase in the number of active flavours nf in the
running of αS .

Although we show in (9) only the equation for ċ, we
note that each heavy quark (c, b, . . .) requires a separate
singlet evolution equation [16] since their splitting func-
tions have different θ function contributions.

2.2 NLO evolution incorporating the charm mass

At NLO the inclusion of quark mass effects is a bit more
complicated, although it turns out that we only have to
take mc into account in Pcg and then only in the LO part
P

(0)
cg . (Of course as a consequence we must adjust the vir-

tual corrections to Pgg). The argument is as follows.
We have to improve on approximation (8) of the k2

Ti
integration in (6). To do this we divide the integral into
two parts

∫
dk2

Ti k2
Ti

(k2
Ti + m2

c)2
=

∫
d(k2

Ti + m2
c)

(k2
Ti + m2

c)

−
∫

m2
c dk2

Ti

(k2
Ti + m2

c)2
(12)

where the first term gives the leading logarithm contri-
bution that we discussed in Sect. 2.1. To be specific we
have ∫ Q2

k2
T i−1

d(k2
Ti + m2

c)
(k2

Ti + m2
c)

= ln
Q2

m2
c

(13)

for k2
Ti−1 � m2

c , which is equivalent to the threshold fac-
tor θ(k2

Ti − m2
c) of (8). The second term in (12), which is

concentrated in the region k2
Ti ∼ m2

c , gives a constant con-
tribution. That is, it is a NLO contribution (containing a
factor αS without an accompanying lnQ2). It means that
the m2

c effects need only be evaluated in the LO (one-loop)
part of the g → cc splitting function, P

(0)
cg . For instance

consider the integration over kTi+1 of Fig. 1 and the possi-
bility of m2

c effects in Pcc. Clearly if k2
Ti+1 � m2

c then the
mass terms m2

c/k2
Ti+1 can be neglected. If, on the other

hand, k2
Ti+1 ∼ m2

c then either k2
Ti � m2

c and c(x, k2
Ti) = 0

or k2
Ti ∼ m2

c and we lose two lnQ2 factors so that the con-
tribution is NNLO, which we omit here. That is, at NLO
there are no mc effects in Pcc. A similar argument shows
that this is also true for Pgc.

In summary, we have shown that at NLO Pcc and Pgc

remain as in Sect. 2.1, whereas

Pcg = P (0)
cg (mc) + αS P (1)

cg (mc = 0) θ(Q2 − m2
c). (14)

That is we need only evaluate the effect of the charm mass
on the LO part of Pcg. As a consequence of the change in
Pcg, we have to adjust the virtual correction to Pgg by an
amount

∆P (0)
gg = −δ(1 − z)

∫ 1

0
dz z

(
P (0)

cg (z, mc) (15)

−P (0)
cg (z, mc = 0)

)
,

see Sect. 2.3. This adjustment also restores energy-momen-
tum conservation.

We note that instead of a charm density based on the
Renormalization Group (RG) equations and leading-twist
contributions4 we have introduced an arguably more phys-
ical parton density based on the leading lnQ2 decomposi-
tion of the Feynman diagrams retaining full mass effects.
This charm density is universal5 and the partonic mo-
mentum sum rule is satisfied. Our definition of the parton
density coincides6 with the conventional (massless) RG–
based definition for Q2 � m2

c .
We have seen that in our approach at NLO we need

only consider mc 6= 0 effects in the LO diagrams. It is
straightforward to extend the formalism to allow for charm
mass effects in NNLO evolution. We need only consider
mc 6= 0 effects in the NLO diagrams. That is we need
to evaluate the “blocks” gg → gg, gg → cc, qq → cc to
O(α2

S) with m2
c included explicitly, but only in the region

k2
Ti ∼ m2

c . For example, for gg → gg we would need to
evaluate the diagrams shown in Fig. 2.

We can now see how our prescription differs from that
of ACOT [14,15]. In our approach at NLO the mc 6= 0
effect in the γ∗p forward amplitude occurs just in the
loop7 along the parton ladder when k2

Ti ≈ m2
c . Due to

the strong ordering of the kT ’s of the partons along the
ladder we can simply ignore the mass during the subse-
quent evolution and finally for Q2 � m2

c we obtain the
conventional massless coefficient function. In contrast in
the ACOT procedure, which we recall is based on using
massless splitting functions, the mc 6= 0 effect coming from

4 The charm density in the conventional RG approach has
been discussed recently in [13], where the (leading twist) co-
efficients have been fully calculated at NNLO in the limit
Q2 � m2

c
5 Of course, to use the parton density for other processes

we must calculate the coefficient functions within the same
framework

6 In the Q2 � m2
c domain the evolution in Q2 is exactly

the same for both definitions, however the initial conditions
of such an evolution, if it were to originate in the threshold
region, would be different; compare our approach with that of
[13]

7 At NNLO we need to consider two loops with k2
Ti ≈

k2
Ti+1 ≈ m2

c
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c

c

Fig. 2. An example of a “block” diagram along the parton
chain, which gives NNLO charm mass effects if the two s chan-
nel charm quarks have comparable transverse momenta. Then
the charm mass should be retained for all the quark lines that
are shown

c

k ′

c
k

pg

Fig. 3. The diagram used to calculate the charm mass effects
in P

(0)
cg

the loop with k2
Ti ≈ m2

c is assigned entirely to the coef-
ficient functions. It means that we have to sum all the
ladder diagrams, with mc 6= 0 retained, which describe
the evolution in k2

T from m2
c up to Q2. The calculation of

the ACOT coefficient functions is therefore extremely dif-
ficult. Moreover a correction of order αS(m2

c) is obtained
in the ACOT coefficient functions, which survives even at
large Q2.

2.3 Evaluation of quark mass effects in Pcg

We note that heavy quark mass effects were studied in [16,
17] in terms of the anomalous dimensions of the moments
of structure functions. However, it is difficult to apply the
results to parton evolution, since in these early studies
the mass correction plays the role of a higher twist contri-
bution. As a consequence it violates the sum rules which
reflect energy-momentum and baryon number conserva-
tion.

To restore the partonic picture we use “old fashioned”
perturbation theory. That is we calculate the g → cc split-
ting function Pcg in the infinite momentum frame with all
three partons on-mass-shell. The parton four momenta are
shown in Fig. 3. If the momentum of the gluon is large,
pg � kT and mc, then the quark momentum is given by

k =
(

zpg +
m2

c + k2
T

2zpg
; kT , zpg

)
, (16)

and similarly for k′ with z → 1 − z and kT → −kT . We
may write the probability of the g → cc splitting in the
form

dwcg = 8g2TR

d2kT dk‖
(2π)3

[
1

(2zpg)22(1 − z)pg

]
Sp

(∆E)2

(17)

with colour factor TR = 1
2 and where the [. . .] contain the

normalization factors of the two t channel and one s chan-
nel quark lines shown in Fig. 3. The energy denominators

∆E = Ecc − Eg =
m2

c + k2
T

2z(1 − z)pg
(18)

play the role of the quark propagators and the numerator

Sp =
1
2

δ⊥
ab Tr

(
γa

/k + mc

2
γb

−/k′ + mc

2

)

= (m2
c + k2

T )
z2 + (1 − z)2

2z(1 − z)
+ m2

c , (19)

where 1
2δ⊥

ab is the average over the two transverse polar-
izations of the (on mass shell) gluon and 1

2 (/k + mc) is the
quark density matrix. The factor of 8 in (17) arises from
the sum over two polarizations of both the c and c and
allows for the t channel parton to be either c or c.

To identify the splitting function we must rewrite (17)
in the form

dwcg =
αS

2π

dz

z

dQ2

Q2 P (0)
cg (z, mc, Q

2) (20)

where dk‖ = pgdz. The outstanding problem is therefore
to determine the scale Q2 appropriate for k2

T . The scale
Q2 should be chosen so that it correctly reproduces the
timescale of the fluctuations of the gluon into the cc pair,
that is

∆t ∼ 1
∆E

=
2Eg

Q2 (21)

where ∆E is given by (18). It follows that the appropriate
scale would be

Q2 = 2pg∆E =
m2

c + k2
T

z(1 − z)
. (22)

Indeed this would be the physically natural scale to adopt.
It represents the value of Q2 ( >∼ 4m2

c) for which the reso-
lution is sufficient to observe the individual c and c̄ partons
within the short g ↔ cc̄ fluctuation time ∆t.

Unfortunately (22) is not the conventional scale used in
the MS factorization scheme in the massless quark limit, or
rather when Q2 � m2

c . To obtain parton densities which
correspond to the MS scheme for Q2 � m2

c we must take
the evolution scale to be8

Q2 = m2
c + k2

T . (23)

Of course we could use (22) as the evolution scale but then
we would have to change the NLO splitting and coefficient

8 It is connected with the fact that in dimensional regular-
ization in the MS scheme a factor (k2

T /µ2)ε is introduced into
the dk2

T /k2
T integration, see for example [18]. Just as the MS

and MS scheme coefficient functions differ simply by a con-
stant factor, the coefficient functions in the MS scheme and
the ‘natural’ scheme based on (22) differ by a factor which is
a function of z
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functions. Since the NLO coefficient functions, not only for
deep inelastic scattering but also for other processes, have
been calculated in the MS scheme, it is clearly desirable
to remain in this scheme. We therefore adopt (23) as the
evolution scale. Then we can use the MS NLO splitting
functions P (1) for the massless quarks and gluons and for
the massive quarks for Q2 � m2

c . Moreover for Q2 � m2
c

all the NLO coefficient functions have the MS form, except
for one contribution which we discuss in Sect. 3.2.

Now using the evolution scale (23) we have

P (0)
cg = 2TR

[
(z2 + (1 − z)2) +

2m2
c

Q2 z(1 − z)
]

θ
(
Q2 − m2

c

)
.

(24)

Recall that here Pcg stands for the splitting into both c(c)
and c(c). An analogous result for QED may be found in
[19]. The θ function represents the threshold (k2

T = 0) for
generating in the evolution c and c̄ parton densities, which
smoothly tend to the conventional MS distributions at
high Q2. We see that even if at small x we have more than
enough energy W to create a cc pair, W 2 ' Q2/x � 4m2

c ,
then it is possible that the value of Q2 will be insufficient
to resolve the c and c̄ pair within the short g ↔ cc̄ fluctu-
ation time ∆t, that is when Q2 < 4m2

c .
The complete effect of the quark mass in the NLO

splitting functions which involve the charm quark is con-
tained in (24). It leads to the following correction to Pgg

∆P (0)
gg = −2

3
TR δ(1 − z)

m2
c

2Q2 θ(Q2 − m2
c), (25)

see (16).

3 Coefficient functions for deep inelastic
charm production

Just as for light quarks, the contribution of charm to the
deep inelastic structure function F2 is obtained from a
convolution of the parton distributions and the coefficient
functions. We have

F c
2 (x, Q2) =

8
9

∫ 1

x

dz
x

z

[
Cq=c(z, Q2, µ2)c

(x

z
, µ2

)

+Cg(z, Q2, µ2)g
(x

z
, µ2

)]
(26)

where, due to the quark mass, the coefficient functions
have an explicit dependence on Q2. The charm quark co-
efficient function in (26) has the form

Cc = C(0)
c +

αS

4π
C(1)

c + . . . , (27)

while for the gluon we have

Cg =
αS

4π
C(1)

g + . . . . (28)

At NLO accuracy, to which we are working, we need only
the coefficient functions that are shown explicitly in (27)
and (28).

We see that at low scales below partonic threshold,
Q2 < m2

c , where c(x, Q2) = 0, the structure function F c
2

is described entirely by γg fusion, that is by the Cg ⊗ g
convolution. However, we will find that as Q2 increases
from the charm threshold the contribution from the γc
interaction, Cc ⊗ c, increases rapidly and soon becomes
dominant. Of course, as we have already mentioned in the
introduction, when the number of active flavours increases
from 3 to 4 (as we pass through the threshold region) we
must take care to avoid double counting. For example,
if we were to take the limit in which charm is regarded
as a heavy quark, and never a parton, then the entire
contribution to F2 is

F c
2 =

αS

4π
CPGF

g ⊗ g . (29)

We call this fixed (three) flavour approach the photon-
gluon fusion (PGF) approximation. From the above dis-
cussion it might appear that the PGF approximation,
which clearly gives the correct NLO answer for Q2 < m2

c ,
will dramatically undershoot the true prediction as Q2 in-
creases above the charm resolution threshold. This is not
so, since part of the Feynman diagram which is responsi-
ble for the important Cc ⊗c parton evolution contribution
is contained in CPGF

g ⊗ g in the PGF approximation [14].
Thus to avoid double counting we will have to subtract
this contribution from CPGF

g ⊗g. The consistent treatment
of charm mass effects will therefore allow us to quantify
the accuracy of the PGF approximation to F c

2 as a func-
tion Q2.

3.1 The charm quark coefficient function for F c
2

We must specify the coefficient functions for F c
2 that we

introduced in (26)-(28). First the LO charm quark coeffi-
cient is given by

C(0)
c (z, Q2) (30)

= z δ

(
z − 1/(1 + m2

c/Q2)
) (

1 +
4m2

c

Q2

)

where here z is defined with respect to the charm quark

z = z0 =
x

x′ =
(

1 +
m2

c

Q2

)−1

. (31)

The last equality follows directly from the mass-shell con-
dition (x′p + q)2 = m2

c where x′ is the fraction of the mo-
mentum of the proton that is carried by the struck charm
quark, see Fig. 4. The final factor in (30) allows for the
FL component of F2 = FT + FL where

σL/σT = 4m2
c/Q2. (32)

Inserting C
(0)
c of (30) into (26) gives a contribution to

F c
2 (x, Q2) proportional to xc(x′, Q2) where here the true
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Q2

xg

cx′,Q′2

c

c

Fig. 4. The variables used in the discussion of the coeffi-
cient functions Cq=c(z, Q2) and Cg(z, Q2). For the charm quark
function the variable z = x/x′, while for the gluon function
z = x/xg, see (31) and (36) respectively; x is the usual Bjorken
x ≡ Q2/2p.q

scale is µ2 = Q2. In fact at NLO all the mc 6= 0 effects in
the charm quark coefficient function occur in C

(0)
c . Indeed

we justify in Sect. 3.3 that at NLO we may simply use
the massless quark expression for the coefficient C

(1)
c .

3.2 The gluon coefficient function for F c
2

We may write the gluon coefficient function, defined in
(28), in the form

C(1)
g = CPGF

g − ∆Cg (33)

where the PGF expression for F2 is [20]

CPGF
g (z, Q2) ={[

z2 + (1 − z)2 +
4m2

c

Q2 z(1 − 3z) − 8m4
c

Q4 z2
]

ln
1 + β

1 − β

+
[
8z(1 − z) − 1 − 4m2

c

Q2 z(1 − z)
]

β

}

×θ

(
Q2

(
1
z

− 1
)

− 4m2
c

)
. (34)

β is the velocity of one of the charm quarks in the photon-
gluon centre-of-mass frame

β2 = 1 − 4m2
c z

Q2(1 − z)
. (35)

The θ function in (34), θ(W 2−4m2
c), represents the cc pro-

duction threshold, where W is the c.m. energy. Its pres-
ence guarantees β2 ≥ 0. The ∆Cg term in (33) is necessary
to avoid the double counting of the graph that we have
already used to compute P

(0)
cg , see Sect. 2.3. That is we

must subtract from CPGF the term P
(0)
cg ⊗ C

(0)
c that we

already include in the parton evolution up to Q2. The z
variable in the gluon coefficient functions is defined with
respect to the gluon momentum fraction xg,

z =
x

xg
= z0z

′ (36)

where z′ = x′/xg, see Fig. 4. Thus the explicit form of the
subtraction term is

∆Cg(z, Q2) (37)

=
∫

dz0

z0
C(0)

c (z0, Q
2)

∫ Q2

Q2
min

d lnQ′2Pcg(z′, Q′2)

=
(

1 +
4m2

c

Q2

) ∫ Q2

Q2
min

d lnQ′2Pcg(z′, Q′2).

The lower limit of integration is given by the “partonic”
θ function which is hidden in Pcg(z′, Q′2), that is

Q2
min = m2

c . (38)

The integration in (37) may be readily performed to give

∆Cg(z, Q2) =
[{

z′2 + (1 − z′)2
}

ln
(

Q2

m2
c

)
(39)

+z′(1 − z′)
(

2 − 2m2
c

Q2

)] (
1 +

4m2
c

Q2

)
,

where we require Q2 > Q2
min and where z′ = z/z0 =

(1 + m2
c/Q2)z.

It is interesting to consider the m2
c → 0 limits of CPGF

g

and ∆Cg. We have

CPGF
g → {

z2 + (1 − z)2
}

ln
(

1 − z

z

Q2

m2
c

)

+8z(1 − z) − 1 (40)

as mc → 0, which differs from the exact mc = 0 coefficient
C

(1)
g by the presence of Q2/m2

c in the argument of the
logarithm. However, from (39) we see that

∆Cg → {
z2 + (1 − z)2

}
ln

(
Q2

m2
c

)
+ 2z(1 − z) (41)

as mc → 0, which removes the ln(Q2/m2
c) term in C

(1)
g =

CPGF
g − ∆Cg.

The difference CPGF
g − ∆Cg is exactly as in the con-

ventional (massless) MS scheme apart from the final term
2z(1 − z) in ∆Cg. This discrepancy is due to the different
order in which the limits are taken in the calculation of
the coefficient function. In the massless case we first take
mq → 0 and then ε → 0, which is equivalent to taking the
infrared cut-off Λ > mq, whereas here we have first to take
ε → 0 and then consider the Q2 � m2

c limit. That is we
can only neglect9 m2

c in P
(0)
cg of (24) if Q2 � m2

c , whereas
we need to evaluate Pcg in (37) down to Q2 = Q2

min = m2
c .

3.3 Choice of scale

We now come to the choice of the scale µ2 in (26). First
we consider the convolution involving the gluon. The only
dependence on the scale µ2 in the coefficient function Cg

is in the argument of αS in (28). C
(1)
g has no dependence

on µ2 since all the collinear singularities are regularized by
9 If we were to neglect m2

c in (24) for all Q2 then the addi-
tional 2z(1 − z) contribution in ∆Cg would disappear
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the heavy quark mass provided that µ2 <∼ m2
c . Neverthe-

less we have to choose the scale µ2 for αS and the gluon
distribution. Variation of the scale induces only NNLO
contributions. There is as yet no complete calculation of
the NNLO contributions10 (in our framework) applicable
for all Q2 which would introduce terms compensating the
variation with scale. We must therefore attempt to iden-
tify the ‘natural’ scale for the process. We have already
mentioned that the natural scale for the charm convolu-
tion is µ2 = Q2.

Due to the different way that the scales enter, the
αS(µ2)∆Cg ⊗ g(x/z, µ2) term does not exactly subtract
the LO charm contribution which comes from the convo-
lution C

(0)
c ⊗ c(x, Q2). At first loop level the latter term

is of the form

C(0)
c

∫ Q2

m2
c

dq2

q2 αS(q2) P (0)
cg (z) g

(x

z
, q2

)
. (42)

Here we also take the natural choice11 of scale µ2 = Q2 in
the ∆Cg term. We see that over the whole range of integra-
tion in (42) we then have q2 < µ2 and αS(q2) > αS(µ2).
In other words the subtracted value of the ∆Cg term is a
little less than needed, leading to a lack of smoothness in
F c

2 near threshold. To diminish this effect we could reduce
the scale µ2 in the ∆Cg term by taking, say, µ2 = δQ2

with δ < 1. From the formal point of view the choice of
µ2 should not matter. In a NLO analysis it only induces
changes at NNLO. However m2

c is not so large, and some of
the deep inelastic data used in our fit will be at sufficiently
low values of Q2 that we sample scales µ2 >∼ m2

c . In this
Q2 domain the analysis does have sensitivity to the choice
of scale, showing the need for the NNLO formulation.

Now let us return to the charm quark coefficient func-
tion and, in particular, explain why the massless approxi-
mation is sufficient for C

(1)
c at NLO. After the subtraction

of the LO contribution (in an analogous way to (33) for the
gluon coefficient function) the remaining coefficient C

(1)
c

contains no lnQ2 terms. Recall that in the presence of a
heavy quark mass we lose a logarithm (see (12) and (13)).
Therefore at NLO we need only consider mc 6= 0 in the LO
diagrams. Similarly at NNLO we only require mc 6= 0 in
the NLO graphs and so on. Therefore the (non-logarithmic
O(αS)) contribution C

(1)
c is only needed when Q2 � m2

c ,
as was discussed in Sect. 2.2 after (13). For Q2 <∼ m2

c the
charm density c(x, Q2) = 0, while for Q2 >∼ m2

c two pow-
ers of lnQ2 are lost (one in Pcg and one in C

(1)
c ) and so

this region contributes only at NNLO. Thus we can set
mc = 0 in C

(1)
c . Of course we must use the same definition

of the scale Q2, (23), as for massless evolution in the MS
scheme.

10 However for Q2 � m2
c see [13]

11 Of course we do not want µ2 < m2
c and so, in the analysis

described in Sect. 4, we take µ2 = max{Q2, m2
c}

3.4 The resolution of charm

Although we now have a definite framework which enables
us to incorporate a mc 6= 0 charm parton into a parton
analysis, we immediately encounter a problem when we
confront the data. The charm density rises rapidly as we
evolve up from the threshold Q2 = m2

c (required by the
MS scale (23)) such that in the region Q2 >∼ m2

c it is in con-
flict with the data. The reason is clear. At such a low scale
Q2 = m2

c the coupling αS is large and we should include
NLO, NNLO, . . . corrections in the coefficient and split-
ting functions. The result would be to raise the threshold
from Q2 = m2

c to Q2 ≈ 4m2
c , the scale at which the charm

parton may be resolved, see (22). As an example recall the
NLO correction Cg of (33). In this case ∆Cg, which was in-
troduced to avoid double counting, exactly cancels the LO
ladder contributions and leaves CPGF

g which embodies the
natural physical threshold at Q2 ∼ 4m2

c . Unfortunately we
cannot arbitrarily change the definition of the scale since
we will no longer match on to the conventional MS coef-
ficient functions for Q2 � m2

c . To keep these coefficient
functions we are forced to take the threshold at Q2 = m2

c .
However, we can choose a better LO approximation by re-
summing part of the NLO and higher order corrections12.
If we can improve the LO approximation in this way then
we will have a more convergent perturbation expansion.
This can be accomplished by introducing a factor

f =
(

1 − 4m2
c

Q2

)
θ

(
1 − 4m2

c

Q2

)
(43)

into the charm coefficient function Cc of (27) and (30)
which, via (37), then feeds through into ∆Cg. We see that
f → 1 for Q2 � m2

c .
At first sight the introduction of the factor of f (which

restores the natural threshold) appears to modify even the
LO result, which in symbolic form now may be written

F c
2 (LO) = fC(0)

c ⊗ c . (44)

This is not so. In fact we will see that the modifications due
to the introduction of f only enter at NNLO. At LO we
have strong ordering in transverse momenta. LO contribu-
tions therefore only occur for Q2 � m2

c , where f → 1. This
reflects the fact that mass effects correspond to the loss of
a factor of lnQ2 and only contribute at the next order of
αS . So the NLO contribution is changed, but only by an
amount ∼ αS ln(4m2

c/m2
c) ∼ const. αS coming from evo-

lution over the limited interval m2
c < Q2 ∼ 4m2

c . However
even this contribution is cancelled by the ∆Cg coefficient
function. To see this we inspect the NLO form

F c
2 (LO + NLO) = f

(
C(0)

c + αSC(1)
c

)
⊗ c + αSC(1)

g ⊗ g.

(45)
To obtain the gluon coefficient function C

(1)
g , recall that

we evaluated γg → cc̄ at O(αS), which we denoted by

12 The simplest illustration of this procedure is the choice of
scale of αS , say Q2 or Q2/4 or . . . , in the coefficient functions
so as to minimize the K factor coming from O(αS) corrections
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αSCPGF
g , and then subtracted the LO part (∼ αS lnQ2),

which was already included,

F c
2 (LO) = f C(0)

c ⊗ c

= f C(0)
c ⊗ αS lnQ2P (0)

cg ⊗ g

≡ αS∆C(1)
g ⊗ g , (46)

where it is sufficient to use the LO expression for the
charm density. Thus

αSC(1)
g = αS

(
CPGF

g − ∆C(1)
g

)

= αSCPGF
g − fC(0)

c ⊗ αS lnQ2P (0)
cg . (47)

The last term of (47) exactly cancels the first term of (45),
so

F c
2 (LO + NLO) = αSCPGF

g ⊗ g + fαSC(1)
c ⊗ c . (48)

Thus the introduction of the ad hoc factor f gives rise
to a modification (1 − f)αSC

(1)
c ⊗ c which only enters at

NNLO. Indeed, in the appendix we show precisely how
the modification is cancelled when working to NNLO.

Thus, in summary, in the NLO global parton analysis
of Sect. 4 we make the replacement

C(0)
c → fC(0)

c (49)

in (30), and similarly for C
(1)
c . Hence (39) becomes

∆Cg → f∆Cg , (50)

where f is given by (43). After the introduction of the
factor f , only the PGF contribution survives in the region
Q2 < 4m2

c below the resolution threshold, even though we
have a non-zero charm parton density for Q2 > m2

c . As we
evolve above the resolution threshold Q2 = 4m2

c the charm
parton component of F c

2 rapidly becomes important.

4 Charm as a parton in a global analysis

The measurements of F2 at HERA have become much
more precise with errors as small as ±3% or less. More-
over, since the charm component F c

2 of F2 is about 0.25
in the HERA regime it is important to improve the treat-
ment of charm in the analysis of deep inelastic scattering
data. This was the objective of Sects. 2 and 3 above. The
new formalism incorporates the heavy quark masses in the
parton evolution equations and allows a determination of
the (universal) charm and bottom quark densities. Indeed
we can predict c(x, Q2) and b(x, Q2), as well as the charm
and bottom components of F2, directly from a knowledge
of the gluon and other quark densities. There are no free
parameters, although the results do depend on the values
of mc and mb, and, as usual, on the truncation of the per-
turbation expansion. As in previous analyses, we work to
NLO.

The new framework is an advance on the existing treat-
ment of charm in deep inelastic scattering. Recall that

two different types of approach are used at present. In the
first, charm is set to zero below some scale (c(x, Q2) = 0
for Q2 < µ2) and for Q2 > µ2 the charm distribution
is evolved assuming that mc = 0. This is the approach
advocated by ACOT [14,15]. So far it has been imple-
mented at LO level. At higher orders it will be much
more complicated to implement consistently. Secondly, we
have the PGF approach [10,11] based on the calculation
of γ∗g → cc with the correct kinematics, but in which c
is not treated as a parton. As we have seen, this gives the
correct description of F c

2 for Q2 < m2
c and should remain

a reasonable approximation to F c
2 for Q2 >∼ m2

c . However,
the PGF model will inevitably break down at larger Q2

values when charm can no longer be treated as a non-
partonic heavy object and when it begins to evolve more
like the lighter components of the quark sea.

Before we present our predictions for c(x, Q2) and
b(x, Q2), we perform a NLO global analysis of deep in-
elastic and related data which incorporates the mq 6= 0
parton evolution procedure that we introduced in Sects.
2 and 3. This may be regarded as a small refinement of
the global analysis determination of the gluon and light
quark densities of [8], but it does allow the gluon (and
other parton) distributions to readjust themselves to ac-
commodate the new treatment of c(x, Q2). Recall that the
heavy quark distributions, c(x, Q2) and b(x, Q2), do not
contain any free parameters apart, of course, from mc and
mb. Motivated by QCD sum rules, we take mc = 1.35 GeV
and mb = 4.3 GeV [21]. We show the effects of varying the
value of mc when we discuss the description of F c

2 . In fact
we find that the overall description of the data (and in
particular of F2 in the HERA regime) improves compared
to our previous analyses [8]. The only change to the data
set that we use is the addition of the final NMC data [22]
for F2.

We shall present full details of the new global analy-
sis13 in a future paper in which we will discuss the im-
provements of the deep inelastic data and their implica-
tions. However, in Table 1 we illustrate the quality of the
new fit relative to our previous fit that best described the
HERA data, MRS(R2) [8]. We see that despite now having
a prescribed charm distribution, the quality of the new fit
is comparable to or actually slightly better (particularly
for the small-x F2 measurements) than that of the previ-
ous analysis.

The HERA data lie in the region where F c
2/F2 is lar-

gest and there is clear improvement in the new fit for these
data. The value of αS resulting from the new fit is αS(M2

Z)
= 0.118, intermediate to the values 0.113 and 0.120 of
MRS(R1) and (R2) and the lower χ2 for the BCDMS data
in the Table is due to this. Our prescription for αS(Q2)
across charm and bottom thresholds is to match the values

13 The FORTRAN code for this set of partons, MRRS,
together with the code for computing each flavour com-
ponent to F1, F2 and FL is available by electronic
mail from W.J.Stirling@durham.ac.uk, or directly from
http://durpdg.dur.ac.uk/HEPDATA/MRS
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Table 1. χ2 values for some of the data [5,6,22–25] used in
the global fit. Note the larger χ2 values for the E665 points [25]
than those quoted in [8] — these result from our correcting our
previous incorrect treatment of the E665 experimental errors

Experiment # data χ2

MRRS MRS(R2)

H1 F ep
2 193 133 149

ZEUS F ep
2 204 290 308

BCDMS F µp
2 174 271 320

NMC F µp
2 130 145 134

NMC F µd
2 130 119 98

E665 F µp
2 53 60 62

E665 F µd
2 53 54 60

SLAC F ep
2 70 96 95

at Q2 = m2
c , and again at Q2 = m2

b . Thus we define

αS(4)(Q2) = αS(Q2, 4) (51)

and take, for 5 flavours,

α−1
S(5)(Q

2) = α−1
S (Q2, 5)+α−1

S (m2
b , 4)−α−1

S (m2
b , 5), (52)

while for 3 flavours we have

α−1
S(3)(Q

2) = α−1
S (Q2, 3)+α−1

S (m2
c , 4)−α−1

S (m2
c , 3). (53)

In Fig. 5 we show the flavour decomposition of the
sea as a function of Q2 for two different values of x. Re-
call that there are now no input parameters for the heavy
quark distributions, c(x, Q2) and b(x, Q2), and that they
are determined in terms of the gluon (and other parton)
distributions.

We show the description of both the fixed target and
HERA data for F c

2 in the next section. The charm data
are not used in the global fit. However, when they become
more precise these data should be included as they will
provide a significant extra constraint on the gluon distri-
bution. The gluon density from the new fit compares very
closely with that of MRS(R2). The new gluon is more
‘valence-like’ at Q2

0 = 1 GeV2, but for Q2 ≥ 2 GeV2 both
gluon distributions rise at small x and become increasingly
similar as Q2 continues to increase.

5 The structure of F c
2

Figure 6 shows the partonic decomposition of F c
2 as given

by (26), which may be written in the symbolic form

F c
2 = Cc ⊗ c + Cg ⊗ g. (54)

The gluonic component gives the total production below
the charm resolution threshold, Q2 < 4m2

c . However, the
component driven by the charm distribution rises rapidly
above threshold and becomes dominant at larger Q2. We
also show for comparison the photon-gluon fusion predic-
tion CPGF ⊗ g. The PGF model and our prediction are
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Fig. 5. The flavour decomposition of the quark sea distribution
of the proton as a function of Q2 at two values of x. The total
sea is given by S = 2(u + d + s + c + b)

identical below threshold, Q2 < 4m2
c . Above threshold we

see that the rapid onset of the charm parton component
Cc ⊗ c is largely balanced by the subtraction ∆Cg from
the PGF result. Let us discuss in turn the behaviour of
F c

2 near the charm threshold and then at large Q2.
The lack of smoothness of F c

2 apparent in Fig. 6 in the
charm threshold region is due to the mismatch of the sub-
traction term αS∆Cg ⊗g with C

(0)
c ⊗c = C

(0)
c ⊗αSP

(0)
cg ⊗g

with different scales of αS and g in the two terms, see Sect.
3.3. In the ∆Cg term the scale is µ2 (where we have taken
the natural choice µ2 = Q2, or rather µ2 = max{Q2, m2

c}),
whereas αS and g in the second term are evaluated at
scales varying over the convolution interval m2

c to Q2. Of
course we could have reduced the mismatch by choosing
a smaller scale µ2, more representative of the m2

c to Q2

integration interval. But formally in a NLO analysis the
choice of scale µ2 (and the mismatch) should not mat-
ter. It only gives contributions at NNLO. However in the
charm threshold region αS(µ2) is relatively large and we
are sensitive to the choice of µ2. If the NNLO formalism
were available the behaviour of F c

2 (x, Q2) in the charm
threshold region would be more stable under variations of
µ2, and would have a smoother form in Q2.

As expected these problems evaporate at larger values
of Q2. Away from the charm threshold region (Q2 >∼ 20
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Fig. 6. The partonic decomposition of F c
2 as a function of Q2

for x = 0.05 and x = 0.005. For Q2 ≤ 4m2
c there is only the

contribution from Cg = CPGF
g . For larger Q2, Cg = Cg − ∆Cg

and the total F c
2 is the sum of this contribution and that from

Cc. The lack of smoothness at the “sharp” resolution thresh-
old Q2 = 4m2

c would disappear in an all orders calculation.
(Even in the present NLO analysis we could have smeared out
the threshold by invoking the usual spread coming from the
Uncertainty Principle, see (21) and (22))

GeV2) the predictions for F c
2 for different µ2 rapidly ap-

proach each other as Q2 increases and become insensitive
to the choice of scale µ2. The effects of the evolution of
the charm density are evident. A measure of the effect is
the difference between the prediction of F c

2 (continuous
curves in Fig. 6) and that obtained in the PGF model
(dot-dashed curves). By Q2 = 100 GeV2, for example, for
x = 0.05 (0.005) the improved description, in which charm
is treated as a parton, lies some 75% (30%) above the PGF
model.

The comparisons of the predictions for F c
2 with the

EMC and the HERA data are shown in Fig. 7. The overall
agreement over quite an extensive range of x and Q2 is
good. The dotted and dashed curves in Fig. 7 show the
effect of taking mc = 1.2 and 1.5 GeV respectively, rather
than the central value, mc = 1.35 GeV, which we use
throughout this paper.

Figure 8 shows the fraction of charm deep inelastic
events as a function of Q2 for selected values of x. The
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x=0.002 (×600)
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x=0.0005 (×4000)

Fig. 7. The description of the EMC and HERA measurements
of F c

2 . The solid line corresponds to our new fit with mc =
1.35 GeV. The dashed and dotted lines correspond to taking
mc = 1.5 and 1.2 GeV respectively, with all other parameters
unchanged. The starred data points in the HERA domain are
obtained by interpolating the preliminary ZEUS measurements
[3] whereas the other HERA data points correspond to the H1
measurements [2]

strong production of charm at HERA is evident; moreover
we see a sensitive dependence on x and Q2. If a significant
fraction of the numerous charm events can be cleanly iso-
lated in the experiments at HERA then the resulting pre-
cision measurement of F c

2 , coupled with the measurement
of F2, will provide a powerful double constraint on the
gluon distribution, as well as offering a stringent scheme
independent test of QCD along the lines of that using F2
and FL proposed by Catani [26].

6 Predictions for F c
L

We may also use the new formalism which incorporates the
quark mass to calculate the charm component F c

L of the
longitudinal structure function. We use expressions that
are identical to (26)–(28) and (33) but with the coefficient
functions Cq=c and Cg that are appropriate to F c

L. For the
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Fig. 8. The ratios F c
2 /F2 and F b

2 /F2 at fixed values of Q2

resulting from the new global fit (in which we take mc = 1.35
GeV and mb = 4.3 GeV). The experimental data point shows
the estimate from [2] for F c

2 /F2 in the HERA kinematic region,
10 GeV2 < Q2 < 100 GeV2

quark coefficient we have

C(0)
c =

4m2
c

Q2 z δ
(
z − (1 + m2

c/Q2)−1) , (55)

whereas for C
(1)
c we may use the massless quark expres-

sion, since we are working to NLO accuracy. For the gluon
coefficient for F c

L we have

C(1)
g = CPGF

g − ∆Cg (56)

where

CPGF
g (z, Q2) = 4β z(1 − z) − 8z2 m2

c

Q2 ln
1 + β

1 − β
(57)

with Q2 > 4m2
cz/(1 − z), where the quark velocity β is

given by (35). Here the subtraction term is

∆Cg(z, Q2) =
4m2

c

Q2

[
. . .

]
(58)

where [. . . ] is the expression in the square brackets in (39).
For ∆Cg to be non-zero we require Q2 > Q2

min, where Q2
min
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Fig. 9. The predictions for Rc = F c
L/F c

T and R = FL/FT as a
function of Q2 for x = 0.0005 and x = 0.05

is given by (38). Just as for the coefficient functions for
F2, we also include the factor f of (43) in C

(0,1)
c and ∆Cg.

In Fig. 9 we present the predictions for FL in terms
of the ratio Rc = F c

L/F c
T . Due to the factor 4m2

c/Q2 in
the coefficient function of the LO charm component given
in (55), we have a pronounced peak in Rc just above the
resolution threshold, Q2 = 4m2

c . In this region Rc is sen-
sitive to the precise choice of the scale µ2. As expected
Rc decreases as Q2 increases, as well as becoming more
stable to changes of scale. The NLO gluonic component
gives a smaller value of Rc than the charm component.
Hence the peak is more pronounced at larger x when the
gluonic component is less important. We also show in Fig.
9 the values of R = FL/FT .

7 Conclusions

The charm component of F2 can be calculated for Q2 <∼
4m2

c by photon-gluon fusion and for Q2 � m2
c by treat-

ing charm just like a massless parton. Of course, there is
a transition from nf = 3 to nf = 4 or more. The ques-
tion that we address is how to treat F c

2 in the region just
above the charm resolution threshold Q2 >∼ 4m2

c . Due to
the presence of a second scale, m2

c , the renormalization
group is not the best way to handle this intermediate re-
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gion. We must therefore seek an alternative procedure. An
attractive possibility is to sum up the leading (and next-
to-leading) log contributions of the Feynman diagrams.
Interestingly, we found that there is a simple and consis-
tent procedure for including mc 6= 0 effects in the Feyn-
man diagram calculation. It may be easily generalised to
any order. In particular the new formalism allows us to
incorporate mc (and mb) into the Altarelli-Parisi splitting
functions and in the coefficient functions in a consistent
way. We can therefore evolve up in Q2 taking proper ac-
count of the heavy quark thresholds. In a NLO global
analysis we showed that the main effect of the quark mass
is in the splitting function P

(0)
cg (or P

(0)
bg ), as well, of course,

as the mass terms in the coefficient functions.
We showed that the threshold for the charm density,

c(x, Q2), occurs at Q2 = m2
c . On the other hand we know

that the threshold for deep inelastic cc production is given
by W 2 = 4m2

c , or equivalently Q2 = 4m2
c(1 − x)/x, which

for small x occurs below the partonic threshold Q2 = m2
c .

This apparent contradiction has a simple explanation. In
the region Q2 < 4m2

c we find that Q2 is too small to
allow sufficient time to observe the g → cc fluctuations
which occur within the proton. Here the photon-gluon fu-
sion mechanism, γ∗g → cc, gives the complete answer.
For evolution above the partonic resolution threshold the
structure of F c

2 is more interesting. The charm compo-
nent γ∗c → c with a spectator c quark (or vice-versa with
c ↔ c) increases rapidly and soon exceeds the gluonic
contribution γ∗g → cc which only enters at NLO. In the
partonic description the LO part of the gluon now has the
structure (g → cc) ⊗ (γ∗c → c). To avoid double counting
we must therefore subtract this LO contribution of the
gluon and keep only the part coming from C

(1)
g .

The above discussion highlights an unfortunate histor-
ical circumstance. The conventional MS scheme requires
the charm threshold to be at Q2 = m2

c whereas charm par-
tons can only be resolved in the proton from Q2 ' 4m2

c .
Let us summarize the situation in a little more detail. Re-
call that we obtain the expressions for the splitting func-
tions, with mc 6= 0 retained, by studying the leading log
decomposition of the Feynman diagrams. From these cal-
culations we saw that it is natural to take

Q2 =
m2

c + k2
T

z(1 − z)
(59)

as the scale at which the partons are to be evaluated. We
called it the resolution scale since it gives, via the Uncer-
tainty Principle, the timescale of the g ↔ cc fluctuations
within which a charm parton may be probed by the pho-
ton. Thus the threshold for resolving a charm parton oc-
curs at Q2 ' 4m2

c (that is z = 1
2 and k2

T = 0 in (59)).
If we were starting from scratch, and from the beginning
we had considered m 6= 0 partons, then this would have
been adopted as the natural scale for parton evolution,
and the coefficient functions would have been calculated
in this scheme. With this natural choice of scale the region
Q2 < 4m2

c would be simply described by photon-gluon fu-
sion [10], which is known to work well in this region. More-
over, we would have a smooth transition through thresh-

old, and would avoid the introduction of an extra factor
to restore this natural threshold.

Unfortunately scale (59) was not originally chosen for
parton evolution, but rather the scale Q2 = k2

T . Thus
to match onto the existing MS coefficient functions for
Q2 � m2

c we must take a scale

Q2 = m2
c + k2

T . (60)

It provides universality of our parton distributions within
the existing MS framework. However it creates a prob-
lem in the threshold region. The threshold for the charm
evolution now occurs at Q2 = m2

c , where the coupling
αS is rather large. In order to restore the natural phys-
ical threshold (Q2 ≈ 4m2

c) we must resum an important
part of the NLO and higher order corrections through the
introduction of the threshold factor f of (43). We have
shown that this can be done consistently to any order in
αS .

In addition to its importance in determining the charm
quark density c(x, Q2), the correct formulation of charm
mass effects in evolution has become essential in order to
obtain an accurate description of F2 in the HERA domain.
The reasons are that the charm component of F2 is appre-
ciable (F c

2/F2 ∼ 0.25 for x ∼ 0.001 and Q2 ∼ 25 GeV2)
and that the measurements of F2 at HERA are now much
more precise.

In summary, in this paper we have shown how to treat
charm as a parton for all values of Q2. The new NLO
partonic formulation, which incorporates mc 6= 0 effects,
has the following important features.

(i) The charm distribution contains no free parameters,
except mc.

(ii) The partons are universal (that is they can be used
in the NLO description of all hard scattering pro-
cesses initiated by protons).

(iii) The splitting and coefficient functions coincide with
those of the (massless) MS scheme for Q2 � m2

c

(with the one exception discussed in Sect. 3.2).
(iv) The momentum and flavour sum rules are conserved.
(v) There is a definite prescription to enable the formu-

lation to be extended to include mc 6= 0 effects at
NNLO and higher orders.

(vi) The new framework, in which the charm density is
defined in terms of a leading lnQ2 decomposition
of the Feynman diagrams retaining the full mass ef-
fects, is applicable in the important threshold14 re-
gion Q2 >∼ m2

c .

Finally, we have used the new prescription to perform
a global analysis of deep inelastic and related hard scatter-
ing data and generated charm and bottom quark densities.
The analysis predicts the values of F c

2 (and F b
2 ). We find

that the predictions for F c
2 show some sensitivity to NNLO

14 The latter region is inaccessible to the RG approach to the
charm density. Indeed it is not clear how to formulate the RG
approach when an extra dimensionful parameter (mc) is essen-
tial. For Q2 � m2

c our formulation reduces to the conventional
RG massless parton approach
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effects in the charm threshold region (Q2 ∼ m2
c), but

become increasingly stable as Q2 increases above about
20 GeV2. We find good agreement with the EMC and
HERA measurements of F c

2 . These data, which span a
wide range of (x, Q2), were not used in the global anal-
ysis. Clearly as the experimental precision increases they
should be included, and will impose a valuable additional
constraint in the determination of the parton densities,
and of the gluon in particular.
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Appendix

Here we demonstrate how, if we were to work at NNLO,
the factor f of (43) contributes only at NNNLO. If, for
simplicity, we neglect the light quarks, then we have in
analogy to (45)

F c
2 (. . . + NNLO) = f

(
C(0)

c + αSC(1)
c + α2

SC(2)
c

)
⊗ c

+
(
αSC(1)

g + α2
SC(2)

g

)
⊗ g . (A1)

C
(2)
g is given by the O(α2

S) expression for the photon-
gluon cross section, α2

SC
(2)PGF
g minus the α2

S ln2 Q2 and
α2

S lnQ2 contributions which are already generated within
the LO+NLO formalism. That is

α2
SC(2)

g = α2
SC(2)PGF

g − ∆C(2)
g (A2)

with

∆C(2)
g =

fC(0)
c ⊗

[(
αS lnQ2)2

(
P (0)

cg ⊗ P (0)
gg + P (0)

cc ⊗ P (0)
cg

)
⊗ g

+α2
S lnQ2P (1)

cg ⊗ g
]

+ fαSC(1)
c ⊗ αS lnQ2P (0)

cg ⊗ g

+αSC(1)
g ⊗ αS lnQ2P (0)

gg ⊗ g . (A3)

Inserting (A2) into (A1) and cancelling terms, we find that
the residual O(α2

S) part of F c
2 is

F c
2 (NNLO) = α2

SC(2)PGF
g ⊗ g + fα2

SC(2)
c ⊗ c , (A4)

in analogy to (48). The modification (1−f)α2
SC

(2)
c ⊗c due

to the introduction of the factor f is now of NNNLO.
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